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Experimental social psychologists routinely rely on ANOVA to study interactions between factors even
when the assumptions underlying the use of parametric tests are not met. Alternative nonparametric
methods are often relatively difficult to conduct, have seldom been presented into detail in regular cur-
riculum and have the reputation – sometimes incorrectly – of being less powerful than parametric tests.
This article presents the adjusted rank transform test (ART); a nonparametric test, easy to conduct, having
the advantage of being much more powerful than parametric tests when certain assumptions underlying
the use of these tests are violated. To specify the conditions under which the adjusted rank transform test
is superior to the usual parametric tests, results of a Monte Carlo simulation are presented.

� 2010 Elsevier Inc. All rights reserved.
Introduction and Social Psychology Bulletin (PSPB) whereas Stone-Romero, Wea-
Psychological researchers often aim at investigating the impact
of one or more factors on an outcome variable. Rather than con-
ducting several studies, each studying the impact of a single factor,
researchers often want to evaluate the joint impact of these factors
and study their relevant interactions. As an example, social psy-
chologists could suspect an impact of a defendant’s emotional
behavior on the outcome of the sentence carried out by a judge
in a trial court (Leys, Licata, & Klein, 2010). Anger and Guilt could
be two pertinent emotions to set as independent variables while
the trial’s sentence would be the dependent variable. Incorporating
two IVs is especially preferred when their interaction is relevant
for the research question. This would be the case if the presence
(or absence) of guilt impacts differently on the sentence whether
the defendant displays anger or does not.

The statistical approach for analyzing such a design is the para-
metric factorial ANOVA (Keppel, 1991; Sheskin, 2004). But, the
validity of this test can be jeopardized when its underlying
assumptions are not met (Sawilowsky, 1990). In that case, con-
ducting nonparametric tests becomes an interesting option.

In social psychology, nonparametric tests receive little attention
in the regular curriculum (Buday & Kerr, 2000). The literature that
is most frequently referred to (Howell, 1999; Kenny, Kashy, & Bol-
ger, 1998; Keppel, 1991) deals mostly with common nonparamet-
ric tests but not with complex issues, like interactions, leaving
researchers confronted with a conundrum. Two reviews support
this assumption: Sherman, Buddie, Dragan, End, and Finney
(1999) analyzed all publications within 20 years in the Personality
ll rights reserved.
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ver, and Glenar (1995) analyzed the Journal of Applied Psychology
(JAP). Fifteen percents of all studies in PSPB and less than height
in JAP used nonparametric tests. Furthermore, we did a quick re-
view of those articles and found no studies at all using nonpara-
metric test to study interaction.

Nonetheless, we argue that in some violations of ANOVA’s
assumptions, that we will detail further, nonparametric tests yield
more robust results. In view of the paucity of alternatives to ANOVAs,
this article presents a nonparametric method to analyze interactions
– the adjusted rank transform test (ART) – which has the advantage
of being easy to conduct, offers an interesting robustness, does not
depend on the distribution of the variables and is based on regular
F distribution tables. In addition, it can be applied to within-subjects,
between-subjects or mixed experimental designs.
Requirements for conducting a factorial ANOVA

To conduct a factorial ANOVA it is necessary that the distribu-
tion of the dependant variables in the population is normal which
is inferred from the sample’s distribution that, therefore, has to be
close to a normal distribution as well. The variance must be com-
parable between the different experimental conditions (homosce-
dastic). The sampling must be simple random. Lastly, the
dependant variable is required to be at least measured on an inter-
val scale.
Consequences of violations of the assumptions

Whenever one or more of these conditions are violated an in-
crease in type I or type II error may occur. Type I error is the prob-
ethod to analyze interactions: The adjusted rank transform test. Journal of
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ability of falsely rejecting the null hypothesis. The type II error is
the probability of falsely accepting the null hypothesis. The power
of a test is the probability to avoid the type II error.

Arguments supporting the use of parametric tests

Violation of factorial ANOVA does not exclude its use: it is, for
example, possible to apply Likert scales and still use parametric
tests without major consequences (Nanna & Sawilowsky, 1998;
Zumbo & Zimmerman, 1993); A deviation from a normal distribu-
tion when the sample size is above 30 participants per condition
yield robust results (Glass, Peckham, & Sanders, 1972; Lumley, Die-
hr, Emerson, & Chen, 2002); When homoscedasticity is violated, a
correction implying a loss in degrees of freedom or a transforma-
tion of the raw data like using the logarithm or inverting the scores
is acceptable (Howell, 1999; Keppel, 1991; Lix, Keselman, & Kesel-
man, 1996). Besides, most nonparametric tests are not immune to
violations of homosedasticity (Tomarken & Serlin, 1986) and thus
can not be used as an alternative.

Arguments supporting a shift towards nonparametric tests

When several violations of assumptions occur, the power, and
the type I error, of a parametric test is often reduced, and therefore
requires a shift towards nonparametric options (Sawilowsky,
1990). For example, if the samples in different experimental condi-
tions are not of the same size AND the variances are heteroge-
neous, the power of the test is reduced drastically. This is
especially true if the experimental condition with the biggest sam-
ple size is the one with the smallest variance (Box, 1953; Snedecor
& Cochran, 1980). As we will see, using the ART is advisable if the
sample size is under 30 per experimental condition and the
requirement of a normal distribution is not fulfilled, or when het-
eroscedacity occurs along with a non-normal distribution.

Nonparametric alternatives to factorial ANOVA

Many options are available to study interactions but either the
procedure is very complex or is lacking in power. Among the com-
plex solutions are log-linear analysis (Christensen, 1997; Klein &
Azzi, 1999); the Bray-Curtis ordination (Anderson, 2001); the
Welsh-James test (Keselman, Algina, Wilcox, & Kowa, 2000); the
adapted L statistic of rank test (Puri & Sen, 1971, 1985).

Easier to conduct, the ART is based on the test of rank transfor-
mation (RT) introduced by Conover and Iman (1981). The guiding
principle of RT is to assign a rank to each given raw data according
to a classical method – that is described later – and to conduct a
regular parametric test on those ranks. Ranking the data allows
them to be distribution free. Sawilowsky (1990) reports a RT’s sta-
tistical power three times higher than a factorial ANOVA (.91 in-
stead of .32) under non-normal distribution.

However, the presence of both the main effects and significant
interactions alter the robustness of the test. It is therefore neces-
sary to incorporate an adjustment that allows us to avoid this
inconvenience.

How to adjust the RT into ART to study interaction?

Sawilowsky (1990) describes an adjustment of the RT by
removing the main effects according to the principles that were
proposed by Hettmansperger and McKean (1978): an interaction
is defined mathematically as the remaining effect after having de-
ducted all other effects that might contribute to the overall mean
of a group or experimental condition. The ‘‘other effects” are the
main effects of the factors, the general mean and the subjects’
Please cite this article in press as: Leys, C., & Schumann, S. A nonparametric m
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residual error. The main effect of a factor is the effect of one factor
without taking into account the effect of the other factor.

Since the grand mean is supposed to be the same for all samples
and the individual residuals are assumed to be distributed in a uni-
form way within each condition, only the main effect has to be re-
moved. This can be done by subtracting the respective marginal
means from each observation(Rosnow & Rosenthal, 1995). After-
wards, a rank is assigned to each observation pooled together
and a factorial ANOVA is conducted. The significance of the inter-
action term is interpreted just like in the classical ANOVA. Using
this procedure, information concerning the main effects is neces-
sarily lost. However, they can be computed in a second step by
deducting the interaction of the raw data keeping only the main ef-
fects. An example for this calculation is provided below.
Computer simulations

To define the conditions under which ART is a preferable alterna-
tive to parametric tests, we performed simulations using the Monte
Carlo method for different hypothetical distributions in which the
assumptions underlying ANOVA are not fulfilled (Leys, 2009).

Distribution other than normal

Considering a random sample of 20 subjects per conditions, in a
2 � 2 design, the ART is much more powerful than the parametric
test when the condition of normal distribution is not fulfilled. This
was tested with alternative non-normal distributions likely to be
observed in psychological research such as truncated normal and
student distributions and also for asymmetric distributions such
as Gamma.

Heterosedasticity

Confirming previous studies (Tomarken & Serlin, 1986), both
the parametric and the nonparametric tests are sensitive to hete-
rosedasticity. Yet, the implications for the analysis of an interaction
and main effects are divergent. For both, the ART presents the risk
of a slightly inflated alpha; i.e., when there is no effect, the test de-
tects one in approximately 6% of the cases if the alpha is set at 5%.
In a few cases the likelihood of type I error increases up to 9% for
the analysis of the main effects when using the adjusted rank
transform test whereas it does not get over 7% for the analysis of
interaction. The factorial ANOVA never reaches 7% of type I error
inflation.

Analyzing interaction with the ART in heterosedastic conditions
yields less powerful results than the classic factorial ANOVA
whereas analyzing main effects with ART is more powerful. Never-
theless, nonparametric tests present the additional disadvantage of
varying greatly in power: some combinations of the main effects
and interactions can lead to a drastic loss of power whereas other
combinations result in a very satisfying power. Hence, the wisest
choice in case of heterosedasticity, as the sole violated condition,
is to opt for a more complex method like the Welsh-James test,
which is immune to heterosedasticity, or to adapt the data, as pro-
posed before, in order to perform a factorial ANOVA.

Heterosedasticity and non-normal distributions

Finally, if both normality and homosedasticity are violated, the
ART is much more powerful then the factorial ANOVA even for
slight deviations. This is true for the analysis of interactions or
main effects. The difference in power between factorial ANOVA
and ART increases as the deviations from normality and the hete-
rosedasticity get larger.
ethod to analyze interactions: The adjusted rank transform test. Journal of
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Table 1
Raw data of the fictive case.

A1 A0 Marginal mean

B1 6 2
1 3
7 2 B1 ¼ 4:00
8 1
9 1

Group mean AB11 ¼ 6:20 AB01 ¼ 1:80

B0 1 1
2 3
3 2 B0 ¼ 3:40
3 7
4 8

Group mean AB10 ¼ 2:60 AB00 ¼ 4:20

Marginal mean A1 ¼ 4:40 A0 ¼ 3:00 X ¼ 3:70

Table 2
Deduction of the marginal mean of the line and column from the observed data.

A1 A0 Marginal mean

B1 6–4–4.4 = �2.4 2–4–3 = �5
1–4–4.4 = �7.4 3–4 – 3 = �4
7–4–4.4 = �1.4 2–4–3 = �5 B1 ¼ 4:00
8–4–4.4 = �0.4 1–4–3 = �6
9–4–4.4 = 0.6 1–4–3 = �6

Group mean AB11 ¼ 6:20 AB01 ¼ 1:80

B0 1–3.4–4.4 = �6.8 1–3.4–3 = �5.4
2–3.4–4.4 = �5.8 3–3.4–3 = �3.4
3–3.4–4.4 = �4.8 2–3.4–3 = �4.4 B0 ¼ 3:40
3–3.4–4.4 = �4.8 7–3.4–3 = 0.6
4–3.4–4.4 = �3.8 8–3.4–3 = 1.6

Group mean AB10 ¼ 2:60 AB00 ¼ 4:20

Marginal mean A1 ¼ 4:40 A0 ¼ 3:00 X ¼ 3:70

Table 3
Transforming the adjusted raw data to ranks.

Observations �7.4 �6.8 �6 �6 �5.8 �5.4 �5 �5 �4.8 �4.8
Number 1 2 3 4 5 6 7 8 9 10

Rank 1 2 3.5 3.5 5 6 7.5 7.5 9.5 9.5

Observations �4.4 �4 �3.8 �3.4 �2.4 �1.4 �0.4 0.6 0.6 1.6
Number 11 12 13 14 15 16 17 18 19 20

Rank 11 12 13 14 15 16 17 18.5 18.5 20

Table 4
Replacing the adjusted scores with ranks.

A1 A0 Marginal mean

15 7.5
1 12

B1 16 7.5 B1 ¼ 10:15
17 3.5
18.5 3.5

Group mean AB11 ¼ 13:5 AB01 = 6.80

2 6
5 14

B0 9.5 11 B0 ¼ 10:85
9.5 18.5
13 20

Group mean AB10 ¼ 7:80 AB00 ¼ 13:9

Marginal mean A1 ¼ 10:65 A0 ¼ 10:35 X ¼ 10:5

Table 5
Factorial ANOVA to test the interaction.

Source SS df F g2 p

Interaction A � B 204.80 1 7.20 .31 .02
Error 455.30 16
Total 2868.00 20

Note: Being irrelevant, main effects are not presented.
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A numerical example to conduct the ART

To understand the ART better, a set of fictional raw data simu-
late the example of a 2 � 2 design presented in introduction (see
Table 1): The severity of the sentence that should be inflicted on
an offender (1 = very harsh, 9 = very mild) is the DV. The two IVs
are guilt as a factor A (i.e., whether this offender expressed a feeling
of guilt, A1, or not, A0, during the trial) and anger as a factor B (i.e.,
whether the offender expresses anger, B1, or not, B0). The marginal
means suggest that expressing guilt or expressing anger could
yield milder sentences. Yet, looking at the groups means suggest
an interaction: the effect of the expression of guilt might be mod-
erated by the expression of anger.

Studying interaction

The data are adjusted by subtracting the sum of the marginal
mean of the line and the column from each relevant observation.
This isolate the interaction by removing the main effects (see
Table 2).

Ranks are then assigned to the pooled adjusted observations
(see Table 3) by: (a) aligning all the observations in an increasing
order; (b) assigning a rank ranging from one to N in an increasing
order and (c) adapting the rank for tie values by assigning the same
averaged rank to each one.1 For example, the score ‘‘�6” appears
twice and the scores are labeled with ranks three and four. In this
case, the rank for both of the original scores of ‘‘�6” is the mean of
three and four – namely 3.5.

Lastly the factorial ANOVA on the adjusted ranked data is con-
ducted (see Tables 4 and 5). As expected, we obtain a significant
interaction (p = .02) meaning that the impact of guilt on the sen-
tence is significantly different when the defender feels angry than
when he does not. The effect or the partial effect sizes (g2) are easy
to compute just like in a classical factorial ANOVA (see Table 5).

Studying main effects

Main effects can be isolated by subtracting the interaction from
the raw data (see Table 6). The interaction is deducted by subtract-
ing the mean of the two diagonal group means from each observa-
tion. For example, the score 5.20 (=6:20þ4:20

2 ) is deducted from the
observations in condition A1B1 and B0A0. In the same way, the score
2.20 is deducted from the observations in the conditions A0B1 and
A1B0. As a next step, a parametric test follows where the main ef-
fects are calculated without being affected by the interaction (Ta-
1 To rank the variables, use the syntax command RANK VARIABLES with SPSS and
PROC RANK with SAS.
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ble 7). Results show a marginally significant main effect of the
factor A, guilt which, as in regular ANOVA, should not be straight-
forwardly interpreted since the significant interaction shows a
moderation between anger and guilt.

Studying simple effects

A simple effect encompasses both the main effect and the inter-
action of one factor on a dependant variable in one modality of an-
ethod to analyze interactions: The adjusted rank transform test. Journal of
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Table 6
Scores of the fictive example from which the interaction is deducted.

A1 A0 Marginal mean

Observations Rank Observations Rank

6–5.20 = .80 12 2–2.20 = �.20 9
1–5.20 = �1.20 5.5 3–2.20=.80 12

B1 7–5.20 = 1.80 16 2–2.20 = �.20 9 B1 ¼ 4:00
8–5.20 = 2.80 18.5 1–2.20 = �1.20 5.5
9–5.20 = 3.80 20 1–2.20 = �1.20 5.5

Group mean AB11 ¼ 6:20 AB01 ¼ 1:80

1–2.20 = �1.20 5.5 1–5.20 = �4.20 1
2–2.20 = �.20 9 3–5.20 = �2.20 3

B0 3–2.20=.80 12 2–5.20 = �3.20 2 B0 ¼ 3:40
3–2.20=.80 12 7–5.20 = 1.80 16
4–2.20 = 1.80 16 8–5.20 = 2.80 18.5

Group mean AB10 ¼ 2:60 AB00 ¼ 4:20

Marginal mean A1 ¼ 4:40 A0 ¼ 3:00 X ¼ 3:70

Table 7
Overall table of the factorial ANOVA using ART.

Sums of squares of ART with rank adjusted to remove main effects

SS interaction A � B 204.80
SS error 455.30

Sums of squares of ART with rank adjusted to remove interaction
SS main effect A 101.25
SS main effect B 16.20
Error 511.40

Sums of squares for simple effects with both adjustment, and SS reconstructed
SSiA1/B 81.23

SSA1/B =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
81:23
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
30:63
p� �2

¼ 211:62
SSmeA1/B 30.63
SSiA0/B 126.03

SSA0/B =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
126:03
p

þ
ffiffiffiffiffiffiffi
:03
p� �2

¼ 129:95
SSmeA0/B .03

Best estimation of error sum of square by averaging both error sums of squares
Average SS error (455.30 + 511.40)/2 = 483.35

Overall F (using average SS error)
F (1, 16) p

Interaction 6.78 .02
Main effect A 3.35 .09
Main effect B .54 .47
Simple effect A1/B 7.00 .02
Simple effect A0/B 4.30 .05
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other factor. In our example, the two modalities of factor B will be
compared in each of the modalities of factor A (Table 7). Here, AB11

will be compared with AB10 and AB01 with AB00.
Yet, since the main effect and the interaction have been com-

puted separately, the sum of squares of the simple effects has to
be reconstructed2 using the following three steps:

(1) Compute the two simple effects of the interaction, as it
would be done in a regular factorial ANOVA and retain the
sum of squares of the simple effects. In our example we will
note them as SSiA1/B and SSiA0/B.

(2) Compute the two simple effects of the main effects and
retain the sum of squares of those simple effects noted as
SSmeA1/B and SSmeA0/B.

(3) Recreate the global simple effects sum of squares by squar-
ing the sum of the square roots of both the main effect and
the interaction simple effects: SSA1/B
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSmeA1=B

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSiA1=B

p� �2
and identically for SSA0/B.
2 To help computing the ART, we created an Excel spreadsheet to rebuild the simple
effects, compute the error term and display the overall F-ratio for the interaction,
main effects and simple effects in a 2 � 2 factorial design: www.psycho-psy-
soc.site.ulb.ac.be/images/stories/file/ART%202�2%20factorial%20design.xls.
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The last issue is to define the sum of squares of the error. It is, by
definition, independent of any experimental treatment. Therefore,
both error terms of the interaction and of the main effects ANOVA
are relevant estimations of the same error. We recommend using
the average of those two estimations (in fact we would even rec-
ommend using this computed error term in each ANOVA table
we computed until now, as it is done in Table 7).

Thus, the results can be interpreted as follow: If the defendant
feels guilty, then feeling angry will lead to a significantly milder
sentence than feeling no anger. Conversely, if the defendant does
not feel guilty, then feeling angry will lead to a significantly
harsher sentence than feeling no anger.

Conclusion

When studying interactions, parametric analyses are not always
advisable if several assumptions are violated. We have presented
an alternative: the adjusted rank transform test which is a middle
ground between parametric and nonparametric methods. It fol-
lows the nonparametric approach because it is based on a test of
ranks but it is close to parametric tests since the F distribution ta-
bles are used. This method looses much of its robustness as soon as
the main effects occur together with one or several interactions. To
avoid this problem, the scores are adjusted by deducting the main
effects or, the interaction, and then analyzing separately the inter-
actions, or the main effects.
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